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We study axisymmetric plume dispersion from a steady source of mass, momentum 
and/or heat that is subjected to either a time-dependent large-scale external vortex or 
small-scale turbulent axisymmetric helicity. On the basis of the turbulent boundary 
layer and Boussinesq assumptions and by assuming similarity profiles with Gaussian 
distribution in the radial direction the balance equations of mass, momentum, and 
energy reduce to a system of nonlinear differential equations for amplitude functions 
of axial velocity, pressure and density differences as well as azimuthal velocity. The 
system of equations is closed with Taylor’s entrainment assumption. 

The plume radius and the typical radius of the large-scale external vortex are also 
determined. For a simple density structure of the ambient atmosphere (i.e. adiabatic 
conditions) analytical results can be obtained, but for more complicated cases, i.e. a 
layered polytropic atmosphere, the governing equations are examined numerically ; 
computations are reasonably simple and efficient. 

1. Introduction 
The study of air flows induced by mass and heat sources of different types, such as 

forest and urban fires, industrial and volcanic eruptions, explosions etc., is of great 
interest for the evaluation of their environmental impact. If one knows the 
characteristics of the propagation of heat and particle concentration in the atmosphere 
due to such sources, it appears likely that the consequences of dramatic events can be 
predicted in the immediate vicinity above the source and some protective measures can 
be taken. Besides their practical importance, such investigations also provide 
fundamental information because of the complexity of the physical and chemical 
processes that are involved. Axisymmetric air flows produced by fire and known as 
convective columns or ‘fire plumes’, in which hot or warm air rises vertically above the 
combustion zone, are accompanied by radial inflows from the ambient atmosphere. 
Furthermore, highly complicated interactions of buoyancy and dynamic pressure 
changes take place. Such phenomena have been extensively studied. An early general 
study is by Long (1967), a more recent one by Carrier, Fendall & Feldman (1985); 
these may be complemented by works of Smith, Morton & Leslie (1978), Grishin, 
Gruzin & Zverev (1983), Small & Larson (1984/85), Markatos & Pericleous (1984), 
Turner (1986), Small & Heikes (1988) and Gostintsev et al. (1991). One approach is 
Taylor’s entrainment theory (see Turner 1986) which permits the determination of the 
integral characteristics of the plumes. The theory is based on the following entrainment 
assumption: there is an ambient air inflow with a mean velocity that is proportional to 
the axial plume velocity averaged over the cross-section at the inflow level. Such a 
model cannot accurately describe the flow field near the heat and/or momentum source 
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at the ground level, nor the flow in the immediate vicinity of the combustion zone. 
However, it can be considered to be a valid approximation at appreciable height above 
the combustion zone. There are many geophysical examples demonstrating the 
practical success of the entrainment assumption (Turner 1986). 

Another approach is based on the numerical modelling of the full three-dimensional 
problem; it permits calculation of the hydrothermodynamic processes in and around 
the combustion zone, see e.g. Smith et al. (1975), Small & Larson (1984/85), Small & 
Heikes (1988), Markatos & Pericleous (1983), Grishin et al. (1983) and Gosthintsev 
et al. (1991). In this approach it is equally necessary to introduce simplifying 
assumptions because the full dynamical problem must be described by coupled 
equations of hydro- and combustion dynamics. In the case that the accompanying 
density and temperature changes can be considered small, the Boussinesq approxi- 
mation can be employed, (Smith et al. 1975). If they are large, the Boussinesq 
approximation is hardly valid; in this case some authors consider the flows above a 
source as those of an ideal compressible gas, the density of which does not depend on 
pressure. Combustion kinetics is replaced by some volume heat addition (Small & 
Larson 1984/85; Small & Heikes 1988). There is only a small number of articles that 
take into account (i) the chemical kinetics of combustion products, (ii) higher-order 
complex turbulent closure hypotheses for the viscosity and heat conductivity and (iii) 
phase transitions (Grishin et al. 1983; Markatos & Pericleous 1984; Gostintsev et al. 
1991). All these investigations make use of very large amounts of numerical 
calculations. 

Most articles dealing with fire plumes are devoted to non-rotating structures. Some 
observations, however, show that rotating convective columns do sometimes exist 
(Carrier et al. 1985; Long 1967). There are at least two possibilities for why the plumes 
rotate. The first is considered by Carrier et al. (1985) and is related to external large- 
scale vortices which initiate and draw convective columns into rotation. In this article 
we study such a model at greater length. The second one, which we propose here and 
consider in detail, is associated with the formation and existence of large-scale vortical 
structures in the presence of small-scale helical turbulence (see Berezin, Hutter & 
Zhukov 1991) and the references quoted therein. Hence, in this work we analyse 
rotating fire plumes on the basis of continuum mechanics. 

2. Rotating plumes associated with external large-scale vortices 
In this section we derive more precisely and amend in certain respects the equations 

given in Carrier et al. (1985) and represent the results and analysis of their solutions. 

2.1. Assumptions and equations 
The governing equations are the balance laws of mass, radial momentum, axial 
momentum and energy in steady form; azimuthal angular momentum in unsteady 
form; and the equation of state. Axisymmetric conditions are implied and no 
dissipative processes are assumed :t 

(v), + (rpw), = 0, (2.1 a) 
(rpu')), + (rpuw), + rp, -pu' - 2rSZpv = 0, (2.1 b) 

(2.1 c) 

t In equations (2.1) the radial stresses T,, and heat flux q, could be incorporated as those flux 
components that survive when the classical boundary layer assumption is imposed. We omit them 
because equations will be integrated in the radial direction later on, whereupon contributions from 
them vanish at r = 0 and r = oc). 

r ' @ ~ ) ~  + (r'puu), + (r'pw), + 2r252pu = 0, 
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(rpuw)r + (rpw2)Z + ~ P Z  + rpg = 0, (2.1 d )  

(rpuT)r + (rpwT)z + rpgw/cp = 0, (2.1 e) 

The set (2.1) is complemented by the hydrostatic equation for the still, ambient air, i.e. 
p = RpT. (2. If> 

(ILL = -gp,, (2.2) 

relating the vertical pressure gradient and mass density of the ambient atmosphere. In 
the above u, 0, w are the physical velocity components in the radial, azimuthal and axial 
directions, respectively; c,  = const is the specific heat of air at constant pressure; 
R = R / M ,  where R is the universal gas constant and M the mol mass; and SZ the 
normal component of the Earth's angular velocity; a subscript a denotes physical 
characteristics of the ambient atmosphere. Equation (2.1 a) is the steady equation of 
balance of mass written in axisymmetric cylindrical coordinates, (2.1b-d) are the 
radial, azimuthal and axial components of the momentum balance in which the 
Coriolis terms are incorporated, and (2 . l e )  is the energy equation. Indeed, if we 
combine the (dissipation free) enthalpy balance prh = ip, where h = cp  T and 
p = (dp/dz) i = -pgw, via the hydrostatic pressure assumption, with the mass balance 
prh = 0, i.e. add the two, we obtain Cprh)' = -rpgw, whose steady axisymmetric form 
is given as (2.1 e). 

In the context of (2.1), (2.2) the only reason for convective column rotation is an 
external, strong enough, large-scale vortex. Hence, as done by Carrier et ul. (1985) we 
only retain the time derivative in the azimuthal angular momentum equation. We 
assume also that the perfect gas law holds, and this assumption implies the equation 
of state, ( 2 . l n .  

The processes we want to study are expected to be essentially subsonic flows for 
which velocities are very much smaller than the velocity of sound (lul < c,); it therefore 
is natural to assume that the mass density does not depend on pressure, e.g. density 
changes are associated (primarily) with temperature changes. Thus, deviations of the 
density and temperature fields from values corresponding to those in the ambient 
atmosphere, as well as velocities, are of first order, while pressure deviations from the 
hydrostatic value pa are of second order in the small parameter u/c,, c, = ( ~ , / p , ) ' / ~  
where a subscript zero denotes a constant reference value (for example, the ground 
level value). 

Thus, to leading order the equation of state takes the form RpT=p, (z ) ,  and the 
mass density p may be approximated by its ambient value p,(z) everywhere except in 
the gravity term in (2.1 d). If the spatial scales of the outside vortex are not larger than 
100 km, the effect of the Earth's rotation on the vortex development can be ignored, 
whence the Coriolis term can be omitted, and thence we have the following equations: 

(rp, u)r + (rp, w)z = 0, ( 2 . 3 ~ )  

(rp, uz)r + (rp, UW),  + rpr-p, u2 = 0, (2.3 b) 

rapa vt + (r2p, uv)r + (r'p, m), = 0, (2.3 c) 

(rpa uw)r + (rpa w2)z + r ~ z  + rPg = 0, (2.3 d )  

( rp ,  uT), + (v, w, + r p ,  W / C ,  = 0. (2.3e) 

The temperature may be expressed in terms of the density via the equation of state 

T = T,(1+ 0, -P) /Pa) .  

It will be assumed that the ambient values of the pressure p a ,  temperature T, and mass 
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density pa are functions of the height z alone. Solutions of (2.3) are sought in similarity 
form using the following Gaussian profiles : 

w(r, z, t )  = W(z, t )  e+, (2.4a) 
(2.4b, c )  

u(r, z, t)  = u&-, z, t)  + 02(r, z,  0, (2.4d) 
P,(z) -P@, z, t )  = d z ,  t )  eS, p,(z) -p@, z , t )  = f(z, t )  e+, 

r2 r2 
$(r, z, t )  = -- b2(z, t )  ’ t ( r ,  z, t )  = -~ B2(z, t )  * 

Here, W(z, t), a(z ,  t) ,f(z,  t ) ,  V(z, t) ,  b(z, t )  and B(z, t )  are regarded as un-nown, but (2.3) 
form only five equations from which these can be determined. Orders of magnitude 
arguments are used by which the azimuthal component of the momentum equation can 
be split into two relations. 

In (2.4), b(z, t )  is a radial scale for the plume characteristics, B(z, t )  is a typical radius 
of the external large-scale vortex with z-dependent circulation whose value at r = co 
equals T(z) (we absorb the factor (;IT) in r ( z ) )  ; v1 is the response to the circulation T(z), 
whereas v, is the redistribution of the azimuthal component of velocity along the plume 
axis. 

This decomposition has already been suggested by Carrier er al. (1985) and is 
implemented here within the framework of Gaussian profiles : u, is the simplest smooth 
interpolation between u,  = 0 on the axis of the cylindrical frame of reference (at 
r = 0) and 0, + T/r as r + co ; v2 is a smooth interpolation between the zero values at 
r = 0 and r + co whereby the decay rate is exponential as r becomes infinitely large. The 
choice supposes that the only reason for a convective column rotation is an external 
large-scale vortex, the radius of which possesses a typical decay rate time that is 
substantially larger than a typical time of the unsteady processes in the plume. Such an 
assumption dictates the functions vlt and v2r to be leading-order terms in the azimuthal 
momentum equation. The terms of second order would yield the equation containing 
the z-derivatives (note that these are weaker than the r-derivatives). Incidentally, this 
scaling is also justified because with its typical values of the rotation times and 
azimuthal velocities of plumes are obtained as substantiated by measurements during 
the first storm in Hamburg, see Carrier et al. (1985). 

Now, let us substitute the functions (2.4) into (2.3) and integrate them over the radial 
direction from r = 0 to 00. At the plume axis r = 0 symmetry conditions must be 
imposed. At infinity ( r  = co) Taylor’s entrainment assumption is invoked: the specific 
inflow volume flux at the ‘edge’ of the plume equals a fraction 01 of the upward axial 
velocity maximum, e.g. limr+m (ru) = -abW, where a = 0.093 for non-rotating plumes 
and can be less for rotating plumes, see Carrier et al. (1985). Such a procedure leads 
to the following equations (see the Appendix for details) : 

(pa b2 W)’ = 2apa b W, ( 2 . 5 ~ )  
@, b2W2)’ = 2 ( a f b 2  + (ab2)’), (2.5b) 

(2.5 c)  

v = -4rb/(B2 + b2), (B’), = - 2016 W, (2.5 e, n 
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where the prime denotes differentiation with respect to z.  In this integration process the 
following simplifying assumptions were made. 

(i) A polytropic model of the atmosphere was used, pa = CpEY, C = p o / p p ,  with 
y = cp/c , ,  the ratio of the specific heats at constant pressure and constant volume, 
respectively, and index of polytropy, k. 

(ii) The velocities u, and u, obey the order of magnitude inequalities 

(u2)t -4 (a 0, -4 0, 

so that the azimuthal momentum balance can be split into two equations according to 
these orders, see the Appendix. The splitting is shown in (2.5e) and (2.5f). 

We also note that (2.5d) differs from the corresponding equation derived by Carrier 
et al. (1985) as explained in the Appendix. 

Let us introduce the functions 
F(z, t )  = pa b2 W, G(z, t) = pa b2 W2, H(z, t )  = cP T, b2jW, 

describing axial fluxes of mass, axial momentum and energy along the vertical line 
above the source. Then the set (2.5) can be rewritten in the following form: 

Functions W, b, f are related to the fluxes F, G, H by the expressions 

If a background vortex is absent (r = 0), the pressure deficit cr is zero, and we have 
W = G/F,  b = F/(p, G)'/', f = pa H / ( c ,  T, F) .  

The set (2.8) describes a steady non-swirling plume, since in the model considered the 
plume rotation is initiated by an external vortex only. 

In case of an adiabatic atmosphere (k = 1, H = const) there follows 

(2.9) 

These equations have a similarity solution (Carrier e f  al. 1985) if the mass density pa 
and pressure pa  are independent of the height z. In fact, elimination of the function F 
yields 

(GG)' = CG112, 

where the constant C = 4 a p ~ / 2 g H / ( c p T , ) .  If the solution is sought in the form 
G = A(z+c)", we obtain n = 4/3 and A = (9C/2O),I3. Therefore, the similarity 
solution of (2.9) is 
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E = 4? - 1 )  Hl(2YPa). 
For the primitive functions we have 

113 

(z + c)-5/3. 
b = - ( z + c ) ,  6a  w=-( 5 18age ) l I 3  5P 8 

5 6a 55c(z+c) ' '=(*)(&) 
The general case of a stratified, two-layer polytropic atmosphere 

described by (2.6) has no analytical solution, and it is necessary to solve these equations 
numerically. 

2.2. Numerical algorithm 
We describe now the general scheme for the numerical calculations of (2.6), (2.7). 
Continuous independent variables and dependent functions are replaced by discrete 
pointwise analogues: zj =jh ,  tn = n7, 

h and 7 are spatial and temporal mesh sizes and Q = (F, G,  H ,  B). Assuming that some 
initial profile for the background vortex B(z, 0) = BO(z) and boundary conditions 
q(0, t )  = qo, where q = (F, G, H), are prescribed, we obtain the pressure deficit at z = 0 
and t = 0. Thereafter, the ordinary differential equations (2.6a-c) are solved by the 
fourth-order Runge-Kutta method; they determine the functions q; for all indices j. 
These functions correspond to the initial 'radius' of the background vortex. 
Substituting q! into (2.7) and stepping forward in time yields values of Bf. Making use 
of these values, we solve (2.6) etc. until t = t,,,. 

It is now useful to rewrite (2.6), (2.7) in dimensionless variables, by introducing 
scaled values for length, time and velocity as follows: 

Q(z,, t") = QT; j = 0, 1 ,  . . . , J ;  n = 0 , 1 , .  . . , N; J = z,,,/h, N = tmaz/7; 

(2.11 a-c) z= go - 1 / 6 8 2 / 6  f =  g;3 /5  $15, ij = go 215 115 , 

where go = IO:-'(Pa/~Ya)'lz-o 

is the typical value of acceleration in the non-adiabatic atmosphere at the ground level. 
For the polytropic atmosphere which we consider, go = g( 1 - kl)/kl. Scaled values for 
the functions F, G,  H are 

In the dimensionless variables (2.1 l ) ,  equations (2.6), (2.7) take the following form: 

- 
F = p 0 P U ,  G = po2d, H = cP T,p0uZ-. (2.12 a-c) 

(B2)t = - 201(G/p , )~ l~ .  (2.14) 
Here pa is the ambient mass density scaled by pa, T, is the ambient temperature scaled 
by T, and 

P = 2p, Ff2{ (2 -  ~2)@,G)-'12B-1+~2FaX-2-4FX-1(l  -B@,G)"2 X-lI2 1, 
X =  F2+p,GB2. 

When solving (2.13) numerically, some difficulty arises because of their non-standard 
form due to the term P'. However, if we represent P' as 
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then it is possible to rewrite the set (2.13) in the standard form 

F’ = 2a@, G)l/’, (2.15a) 

(2.1 5 c) 

The functions F, G, H (and B, W, f) depend parametrically on time. As initial 
conditions for (2.15) we take the similarity solution (2.10) at z = 0, corresponding to 
the non-rotating plume in an adiabatic atmosphere, e.g. 

(2.16ec) F , =  (2:fgJ3b:/3, - Go = ( - 2:fgy b;I3, Ho = ;. 2 

Therefore, the problem of vortex flow above a horizontal point source of mass, 
momentum and heat reduces to the numerical solution of (2.14), (2.15) subject to an 
initial condition 

2.3. Results and discussion 
First, note that the plume scale b, and the vertical velocity Wo on the plume axis at the 
ground level z = 0 are constants (because of boundary conditions), and hence owing 
to (2.5f) the typical size (‘radius’) of the external background vortex is 

Bo(t) - (B:(O) - 2ab0 Wo t)’”. (2.17) 

This value equals the ‘radius’ b, at time 

(sufficiently arbitrary) and boundary conditions (2.16). 

B:(O) - b: 
t, = 

2ub0 Wo 
(2.18) 

The rotation velocity of the whole structure is 

and near the Earth’s surface 

For the calculations we choose the following values of parameters: 
po = 1.16 kg m-3, po = lo6 kgm-’ s-~, y = 1.4, 

k, = 0.99, k, = 0.83, Z, = 2.74 km. 
With these and E = 2.6 x los m3 s-’ the typical acceleration go and scale values become 

go = 9.9 x m s-l, z = 584 m, t = 76.8 s, R = 7.61 m s-l. 
The external vortex charateristics were taken as suggested by Carrier et al. (1985): 
r (0)  = 3.2 x lo4 m2 s-’ with the circulation qz ) ,  decreasing linearly in z up to 
z = 3 km, beyond which the value of r is zero; similarly, P(0) = 8 km, and it 
increases weakly with height : 

3.2 x 104(1 -z m/3000) m2 s-’, z < 3000 m, 
z 2 3000 my 

BO(0) = (8 x 103+0.49z m) m. 
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FIGURE 1.  Azimuthal velocity D m s-l us. radial distance from the plume axis r km at times t = 64 min 
(curve 1) and t = 128 min (curve 2) after onset of motion. Source strength E = 2.6 x 10' ma s-l. (a) 
At ground level z = 0 km; (b) at z = 1.18 km above the ground. 

For these values the initial azimuthal velocity at ground level z = 0 and at r = BO(O), 
the 'outer edge' of the background vortex, equals 2.5 m s-l, for the plume size we 
choose 584 m (or in dimensionless form b, = 1). The above choice of parameter values 
corresponds to the scales appropriate to the Hamburg firestorm and is thus relevant for 
real-world situations, see Carrier et al. (1985). Figures 1-3 summarize the results of the 
numerical integration of (2.15), (2.16) as they were obtained with the above parameters. 
Figures l(a) and l(b) display the radial distributions of the azimuthal velocity u at 
times t = 64 and 128 min after onset of the external vortex motion at ground level 
z = 0 (figure 1 a)  and z = 1.18 km (figure 1 b), respectively. The rotation distant from 
the plume axis is cyclonic in consonance with the driving vortex, but close to the plume 
axis it is antiyclonic. This can be explained as follows. According to (2.19), as r +O, i.e. 
r 4 B  

4 
u(r, z ,  t )  = - 1 - :[ l+(b/B)' 

and in the early phase of plume rotation when b 4 B 

(2.21) 

(2.22) 

and if also r 4 b 
u(r, z, t )  = - 3rr/B. 
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Time Radius re,  r** 

Dimensionless 
(4 25 

50 
100 

(b) 25 
50 

100 

min. 
32 
64 

128 

32 
64 

128 

Dimensionless km 

13.7 8 
12,o 7 
590 2,9 

Dimensionless m 
0.05 0.40 
0.07 0.56 
0.40 3.0 

0.40 3.0 
0.46 3.5 
1.06 8.1 

TABLE 1 .  Maximum ground level modulus of the rotation velocity in the anticyclonic core of the 
plume arising at (a) r = r* and (b) in the outer, cyclonic part arising at r = rl* 

Near the ground (z  = 0) at r < B, b x b, 4 B the velocity equals 

(2.23) 

from which we infer that the rotation velocity u(r,O,t), t + 0 ,  vanishes at 
r = rl = (In 4)lI2 b, = 1.18 (or 689 m in dimensional form). In the interval 0 < r < rl 
the maximum modulus of the rotation velocity is 

and it arises where 
r: = bi In (4( 1 - 2r:/(b:))), 

(2.24) 

(2.25) 

from which we deduce r* = 0.57b0 (i.e. 333 m) and lu(r*,O, t)l = 7.97/B:(t), valid for 
small time. This value increases with time since the external vortex size decreases. In 
particular, we obtain the values of table 1 (a). At the plume ‘edge’ r = b and for 
b < B  

v(b, z ,  t )  = - (Tb/B2) (4 / e  - 1) for t -+ 0. (2.26) 

The turning radius from anticyclonic to cyclonic rotation is r = rl; beyond it, the 
rotation velocity increases and reaches a relative maximum at r = r** and falls off for 
r > r**. A selection of these maxima is given in table 1 (b). Evidently, the size of the 
compound plume, i.e. the united structure of the plume ‘core’ and the external vortex, 
decreases with time. Obviously, as r + 00, u(r, z ,  t )  - r / r .  

At height z += 0 the clockwise rotating core is separated from the counterclockwise 
rotating outer part at the radius: 

rl = (In 4)l’’ b(z) = 1 . 1 8 4 ~ )  (2.27) 

and r: = b’(z) In [4( 1 - 2r2,(z))/b2(z)]. (2.28) 

For conditions appropriate for figure 1 (b), z = 1.18 km above ground 

rl = 1.5 (867 m), r* = 0.72 (420 m). 

The existence of an interior region with a weak rotation in the opposite direction to the 
greater part of the compound rotating structure is a phenomenon referred to a 
‘typhoon’s eye’, and is obviously manifest here too. 
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B ( h )  

10 - 

B, 
. - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - 
- D 

0 40 80 120 

t (min) 

FIGURE 2. Time dependence of the external vortex size B and maximum rotation velocity t),,, at 
ground level. Solid lines correspond to the source power E = 2.6 x lo6 m3 s-l, dotted lines to 
6 = 11.3 x 106 m3 S-1. 

t 

. . . . . . . . . 
0 2 4 6 8 b ( h )  

FIGURE 3. Dependence of the plume size b and vertical velocity W on height at 
E = 2.6 x 10' m3 s-l. 

Figure 2 displays the temporal distributions of the size of the external vortex, B,, and 
rotation velocity u,,, at ground level (z = 0) for two values of the source strength. As 
follows from formula (2.18) and is confirmed computationally, the external vortex 
contracts down to the plume size b at t = 142 min; however, the theory cannot apply 
when B - b and so is limited to early time behaviour. 

In figure 3 the distributions of the plume radius b(z) and axial velocity W(z) at 
t = 64 min are presented. The time dependence of these functions is weak since the 
pressure deficit CT (or P) corresponding to the parameters chosen (as in Carrier et al. 
1985) is small. The plume rises to the terminal height z,,, = 5.8 km where the vertical 
velocity vanishes and the plume spreads out horizontally. 

It is interesting to analyse the response of the compound plume to variations in the 
driving sources. When the external vortex circulation is increased by a factor of two, 
then the results are as follows: the plume size b(z) increases by about 5 %  and the 
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vertical velocity on the plume axis is larger by 6 1 0 %  (depending on height). This 
increase can be explained by larger contributions from the pressure gradient P'. The 
azimuthal velocity is up to at least twice as large, which is plausible. 

Next, we increase the source strength to the value E = 11.3 x loe ma s-l, but retain 
the initial characteristics of the external vortex B,(O) = 8 km, r (0)  = 3.2 x lo4 m s-l 
and the source size b, = 584 m. These imply the length, time and velocity scales 
z = 1052 m, b = 1035 s, ii = 10.2 m s-l. In figure 2 the time dependence of the external 
vortex size and maximum velocity of the rotation of the compound structure near the 
ground level is shown by dotted lines. The collapse of the external vortex occurs more 
rapidly than in the case of the smaller power source, and the typical time of the collapse 
equals t ,  = 83 min. The azimuthal velocity v(r, 0, t) changes its direction of rotation at 
r,  = b,(1n4)1/2 = 0.655 (for the given power we have b, = 0.555). In dimensional 
variables the radius rl = 689 m equals the corresponding value for the case of 
E = 2.6 x lo6 m9 s-'. From (2.24), (2.25) we have r* = 0.316 (333 m), u(r,, 0, t) = 
l.N/B;(t). The fire plume rises to the height zmaz = 7.8 (8.2 km) which is obviously 
higher than for the weaker source strength. 

Finally, since our equations (2.5) differ from those of Carrier et al. (1985) in the 
expression for the pressure deficit P, it would be interesting to quantify this difference. 
For the above parameter choice this difference is very small (because P is small) but 
when P is larger at larger values of the circulation r (note P - f) the difference 
between our expression and Carrier et al.'s for P will be significant, but need not be 
quantified, because the expression for the pressure deficit by Carrier et al. (1985) is 
simply wrong and we correct it here. 

3. Steady rotating plume supported by small-scale helical turbulence 
We now suppose that there is no externally applied circulation field but instead a 

helical turbulent field with axial symmetry concentric with the fire source. Such a plume 
can have a rotational velocity component. Helical turbulence is a small-scale feature 
providing the background for the development of the inverse energy cascade and large- 
scale structure (Levich, Shtilman & Tur 1991 ; Berezin et al. 1991). At large Reynolds 
numbers, which we assume, a change of this background does not influence the large- 
scale self-organization and thus is equally ineffective in its dissipative scales. Helical 
turbulence is invariant under translations and rotations, but not under mirror 
reflections, i.e. helical turbulence lacks parity-invariant symmetry. For details, see 
Berezin et al. (1991). Consider such a situation. 

3.1. Formulation of the problem 
The governing equations are (2.3) in which terms due to the helicity are added and 
unsteady time-dependent contributions are omitted. With the help of (3.10) of Berezin 
et al. (1991) the equations can be complemented by the contributions from steady 
axisymmetric turbulence and take the form 

(rpa u)r + (rpa w)z = 0, (3.1 a) 

(rp, u2), + (rp,  uw), + rpr -pa  v2 - W p ,  Sv), = 0, (3.1 b) 

(r2pa uv), + (r'p, wv), + Q(r2pa Su), = 0, (3.1 c)  

(rpa uw)r + (rpa w2)c + rp, + rpg + Q(rpa = 0, (3.1 d) 

(rpa uT)r + (rpa wT)z + rpa W l C p  = 0, (3.1 e) 

Pa = RPT, (Pa),  = -gpa, 
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where S = S(r, z )  is the spatially dependent helicity coefficient. Evidently, the effect of 
helicity enters all three components of the momentum balance. We represent the 
solutions of (3.1) as Gaussian profiles similar to (2.4), i.e. 

w(r,z) = W(z)  e*, ( 3 . 2 ~ )  

(3.2b, c) P,(4 -p(r, z ,  0 = 44 e ~ ,  P,(4 -p@, z,  t )  = p,(z)A4 e ~ ,  

(3.2d, e) 

and assume that the flow excites a helical turbulent field as follows: 

S(r, z )  = So exp (- rz/az).  (3-3)  

Here So and a are constants characterizing the value of the helicity on the plume 
vertical axis and the size of the helicity domain, respectively. Substituting (3.2) into 
(3.1) and integrating them over r from r = 0 to r + co, yields the following ordinary 
differential equations (in the same notation and same dimensionless variables as in $2) : 

(3.4d) 

(3.4e) 

where j = OSo/ais the dimensionless helicity parameter. Equation (3.4d) leads to the 
possibility of the existence of steady rotation in the presence of small-scale helical 
turbulence. The azimuthal velocity v and the plume width b are related to the functions 
F, G, V by the formulas 

At any fixed z the azimuthal velocity possesses a maximum v,,, which arises at 
r*(z) = b(z)/2/2. This maximum value equals 

3.2. Special case. Adiabatic atmosphere and small helicity 
In this case the azimuthal velocity 'amplitude' V(z) is of first order and the pressure 
deficit P of second order in the helicity parameter /?, which is small. Solutions of (3.4) 
are therefore sought in the form of asymptotic expansions of the following type: 

# = #(O) +j#"' + . . . , 9 = (F, G, H ) ,  V = /?V(" + . . . , P = $P(') + . . . . 
(3.5a-d) 

The leading-order functions are solutions of the following equations describing a non- 
rotating plume : 
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This set is the dimensionless analogue of (2.6). In case of an adiabatic atmosphere with 
the additional assumption that the pressure and mass density are independent of the 
height z, (3.6) possess the similarity solution (in dimensionless form) 

(3.7 a-c) 

By substituting the functions (3.7) into ( 3 . 4 4 ,  one finds the ‘amplitude’ of the 
azimuthal velocity in the linear approximation, 

where bo is a typical value of the plume size on the ground. The azimuthal velocity in 
the linear approximation becomes 

4a/3a4(a2 - flbi/ 5 )  
$I2b;(a2 + ‘b;bg2 

b2 = flbi, v(r,z) = (3.9) 

which for fixed height z is of one sign (positive or negative) and vanishes at r = 0 and 
as r+  00. At the ground level fl = 1 (z = 0) it takes the form 

0.45b0. 
4apa4(a2 -a:) renp( -$), a, = -J”S b = 

v(r,O) = 
bXa2 + 6:)’ 

Clearly, for a > a,(a < a,),v(r,O) is positive (negative), and for a = a ,  it vanishes. 
Recall that the quantity a defines the radius of influence of small-scale turbulence. 
Also, for finite r and as z+ 03, 

625/3a4 
u(r, z )  + -- 1 9Ma4 rz-5‘ 

If the dimension of the helical-turbulent domain is less than a, the vortex azimuthal 
velocity is negative at all heights, and has the following maximum modulus: 

(3.10) 

If the maximum of lv(r, z)l is sought over r E (0, co) and z E (0, co) then one obtains 

= 2.25 x (3.1 1) 
64a/?(1/(265) - 5 )  

5(15+ 1/265)(19+ 1/265)2(2e)1/2 
max Jv(r, ‘)I = vmaz = 

r ,  z 

5 1  
at r ,  =- b(z*) ’ z ,  = --(:a( 15 + 2/265)’12 - bo). 

4 2  ’ 6 a  

If the dimension of the helical-turbulent domain is larger than a,, the azimuthal 
velocity is positive at z = 0 and decreases with height, becomes zero at 
z = z1 = (5 / (6a) ) (a45-b0)  < z, and remains negative for z > zl, decreasing in 
modulus like r5 as z+ co. At the height z = z1 the vortex changes the direction of its 
rotation. 
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plume size on the ground, i.e a = bo. Then the vortex azimuthal velocity is 

Y. A .  Berezin and K.  Hutter 

Consider the special case when the dimension a of the turbulent domain equals the 

At the ground level (z = 0 or 3 = 1) this becomes 

the vortex changes the direction of its rotation at 

5b0 b0 z - -(d5- 1 )  x -, ’- 6a a 

and the maximum of the modulus of the azimuthal velocity is given by (3.11) and arises 
at 

Z* = - 5bo (z( 1 15 + 4265)”’ - 1)). 
6a 

The full nonlinear problem as well as the case of a real stratified (polytropic) 
atmosphere with large helicity requires numerical solution of (3.4). 

3.3. Polytropic atmosphere with O( 1)-helicity 
For the polytropic atmosphere considered in $2  we have 

P:, = -gP? P:-;kyl@o kY). 

go = g(1 - k 1 ) / h  

Hence the typical value of the acceleration in such an atmosphere on the ground is 

where k,  = klzm0. 
Equations (3.4) can be solved by iteration using the following scheme : 

(i) determine the functions F, G, H for the non-rotating plume from the equations: 

(ii) substitute the solutions into the expression for the amplitude of the azimuthal 

(iii) calculate the pressure deficit P,  ( 3 . 4 ~ ) ;  
(iv) substituting this expression for P into the right-hand side of (3.4b) yields 

velocity V,  ( 3 . 4 4 ;  

This process yields a ‘new’ updated solution for the function G ;  
(v) determine ‘new’ updated values of the functions F, H from ( 3 . 4 4  and ( 3 . 4 ~ )  etc. 

This scheme has led to a fairly rapid convergence. 
Let us present some results of the numerical computations that were performed with 

the following model parameters: E = 2.6 x lo6 m3 s-17 /3 = 0.5, a = bo = (584 m); the 
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FIGURE 4. Radial distribution of the rotation velocity at ground level. The dotted line denotes the 

radius of the helical turbulent domain. 

t 

-4 0 4 8 12 
v (cm s-I) 

FIGURE 5 .  Dependence of the rotation velocity u,,, on height. 

other parameters are the same as in $2. Figures 4 and 5 show the radial distribution 
of the rotation velocity of the fire plume considered at the ground level and the 
distribution of the maximum rotation velocity us. height z, respectively. This maximum 
azimuthal velocity occurs at the ground level at r = 0.7 (410 m) and equals 11.9 cm s-'. 
The chosen value of the parameter a = b,, associated with a size of the developed helical 
turbulence, is larger than the characteristic value of a,  = 0.45. Therefore, as was the 
case for the adiabatic atmosphere, the direction of the convective column rotation 
changes with height: the fire plume rotates counterclockwise for z < z1 = 1.46 km; at 
z > z1 the rotation becomes clockwise, approaching the maximum velocity of 2 cm s-l 
at the height z = 4.67 km, and then becoming zero at z = 5.95 km, where the plume 
spreads out horizontally. The relatively abrupt change of the form of the curve umaz(z) 
at z m 3 km corresponds to the changes of the polytropic index in the two-layer 
atmosphere considered. The most intensive rotation of the convective column occurs 
near the Earth's surface. 

4. Concluding remarks 
We have considered two mechanisms of rotation of fire plumes initiated by 

axisymmetric sources of mass, momentum, and heat. The first mechanism is associated 
with the postulated presence of an external vortex, which interacts with the fire plume 
and creates a rotating structure (Carrier et al. 1985). The second mechanism (proposed 
by the authors) is based on the assumption that in a zone inside the fire plume there 
exists a domain with small-scale helical turbulence. The balance laws of mass, 
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momentum and energy in the non-dissipative form are integrated over the plume area: 
by assuming similarity profiles for the variables involved, reduced equations are 
derived for their values on the axis. The emerging nonlinear differential equations can, 
in simple situations, be studied analytically and solved numerically in more realistic 
situations with reasonable effort. 

The helical turbulent mechanism gives rise to the possibility for fire plumes to rotate. 
It is shown that the convective column rotates either unidirectionally, or the rotation 
changes its direction at a certain height. Such cases depend on a relation between the 
size of the helical turbulent domain and the plume radius at the ground level (which 
are both input parameters). Finally, we note that the theory can be extended by taking 
into account a turbulent viscosity, associated with the symmetrical part of the stress 
tensor, and the volume heat sources. 

Appendix 
The derivation of (2.5) is based on the substitution of the functions (2.4) into (2.3), 

integrating them over the radial distance from r = 0 to r +  00, and making use of 
Taylor's entrainment assumption. 

(i) From the continuity equation (2 .3~)  we have 

P"'UIO, +(p,  Wq51)' = 0 or (Pa  WA)' = %bW, 

where q51 = sr rexp(-r2/b2)dr. Substituting q51 = b2/2 yields (2.5~). 

(2.3d) yields 

Substituting (2.4) transforms this to 

(ii) Subtracting the hydrostatic equation (2.2) from the equation of axial momentum 

(rpa uw)r + (rpa w)z = r ( ~ a - ~ ) z  +rg(pa-p). 

PQ Wruexp(-r2/b2) I," + ( p U  w#,)' = (a$l)'+d$l, 

where q5, = r exp (- 2r2/b2) dr. The first term equals zero. Substituting q5, = b2/4, 
= b2/2 yields (2.5b). 
(iii) The balance law of energy (2.3e) can be rewritten in the following form: 

( r ~ u  U( T -  Q)r + (rpa w(T- C))z + r((Q,t + g/Cp) pa w = 0. 

Making use of (2.3f) yields 

((ruT,(pa-p))r+ (rwT,(pu-p))z +r((Z)z +g/cp)pa w = 0 

fT,(ru) exp (- r2/b2) I," + W, Wq5&'+ ((T& +g/cp) pa Wq51 = 0- 

and upon use of (2 .4~)  

(A 1) 

We consider a two-layer polytropic model for a dry stably stratified atmosphere such 
that pa = CpF, with index k = k, within 0 < z < z1 and k = k, for z > zl, where z, is 
some given height, y-' 6 kl, , 6 1, y being the ratio of the specific heats for air, with 
C = po/piY, the subscript zero denoting a constant ground level value. For such an 
atmosphere 

(A 2a, b) 
C C 
R "  T, = +r-1 Y (U = R (ky - 1) P:y-2(Pa)z, 
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Substituting (A 2) into (A 1) yields (25c). 
(iv) From the balance law of radial momentum (2.3b), we obtain 

ru exp ( - r2/b2) dr (rp, -pa u2) dr = 0. (A 3) 

The first term equals zero. Integrating the continuity, (2.3a), over r from r = 0 to an 
arbitrary value yields 

ru = 1 2P [pa b2 W(exp (-$) - 11. 

Substituting this into the second term of (A 3) and integrating from r = 0 to r - t  00 

yields 

For the last terms of (A 3) we have 

{ r2 1 (l -exp (- r2/B2))2 dr 
pQ[uzdr = p Q ~ ( u ~ + 2 u l v 2 + u ~ ) d r  = pcr r2 

2 r v  1 1  v2 + 7 1; (exp ( - G) - exp ( - (s + p))) dr + b2 lo r2 exp ( -g) dr 

B bV2 ( I -  (B2 + b2)l12) +-]' 
with V = - 4rb/(B2 + b'). (A 6) 

Substituting (A 4 H A  6) into (A 3) yields the following formula for the pressure deficit: 

) +-] b2 V 2  + b(d2- 
[ W(p, b3 W)']'. (B2+b2)ll2 8 4 2  2 4 2  

(A 7) 

According to estimates by Carrier et al. (1985) the z-dependence of W is sufficiently 
weak, hence it is possible to ignore the last term in (A 7), and we obtain (2.5d), which 
differs from that given by Carrier et al. (1985). The reason for this difference is as 
follows : Carrier et al. integrated the condition p, = pa u2/r over r from r = 0 to r + 00, 

while it is necessary to calculate the integral 

(rPr - Pcr u2) dr- 

(v) When considering the equation of azimuthal angular momentum ( 2 . 3 ~ ) ~  we 
make the following assumption. The response z), to the external circulation T(z) 
changes faster in time than does the redistribution u2 along the z-axis, that is 
( u , ) ~  Q (ul)r, and the z-dependence is weak compared with the r-dependence. Hence, we 
assume ( u ~ ) ~  4 (uJt, u, 4 u,. Then we substitute (2.4) into ( 2 . 3 ~ ) ~  integrate over r ,  from 
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r = 0 to r+  00, and decompose the expression obtained into two parts according to the 
orders of magnitude of the various terms and obtain 

[pa WIoW (rT( I -exp ($)) + (2 r3 exp (g)) dr] = 0, (A 8) 

2rE3Bt  Jr r3 exp (G) dr + p, u ( r r (  1 -exp ($)) 

Formula (A 8) yields 

Since lim,.+m W(z, t )  = 0, we have $(t) = 0 and thus obtain (2.5e). Formula (A 9) yields 
BB, = -abW, or (2.5f). 

This argument can even be made stronger. If in the equation for azimuthal angular 
momentum we do not ignore (u2), as before, but only the terms proportional to the 
time derivative of the plume size b,, we obtain 

ut = - 2rTE3B, exp (- r2 /B2)  + b-'r 4 exp (- r2/b2). 

Making use of (2.5e) at b, = 0 yields 

ut = - rK4rexp(  -r2/B2)-4(1 +b2/B2)exp( -r2/b2)(B2),. 

Substituting this expression into (2.3~)  and integrating over r from r = 0 to r = co 
yields the equation 

instead of (2.5f). The functions 

(1 -4(B2/b2+ 1)-')((B2), = - 2 d W  (A 10) 

b 
2a W 

t,,, = ~ (C,,, - (B2/b2) - 4b2(B2 + b2)-') 

'old = b/(2aW)(C,ew- B2/b2) 
are the solutions of (A 10) and (2.5s), respectively, and we shall choose 
C,,, = c o l d  = C at B(O)/b 9 1. It then follows that 

for the relative error as a function of B/b. At the ground level we thus obtain 

B/b = 2.5 2 1.5 1.2 1.7 1, 

6/lOP3 = 2.5 4.3 6.6 8.8 9.7 10. 

Errors are decreasing with growing B/b. Of course the model is only valid for B > b, 
and this justifies the assumption (u2), 4 (t& 
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